Sinus Jevi Tubular Heating Elements

Heating elements are used for applications such as ovens, cookers and griddles and for warming up tools and machinery. These heating elements are very flexible and can be bent to suit the application. Sinus Jevi has a broad range of steel types which make it possible to supply products for more or less all applications.

Heating elements are often produced to customer-specific requirements.

Heating elements are used for applications such as ovens, cookers and griddles and for warming up tools and machinery. These heating elements are very flexible and can be bent to suit the application.

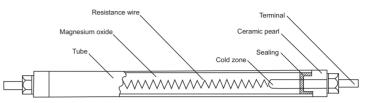
Sinus Jevi's compressed heating elements comprise three components

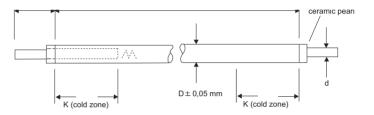
- a special alloy resistance wire which is centered in the tube (resistance wire can be CrNi or DSD)
- magnesium oxide for electrical insulation
- steel tube cap, material depending on application.

TUBE TYPES

Sinus Jevi has a broad range of steel types which make it possible to supply products for more or less all applications. The table on page 2 shows the stocked steel types, maximum length, temperature range and terminal options.

COLD ZONE


The cold zone at the tube ends may vary from 35 mm up to 1200 mm depending on the choice of terminal and tube type.


SEALING

The heating element is sealed to prevent the magnesium oxide from absorbing moisture and thereby causing a transition point in the heating element. Two types of sealant are used, depending on how high temperature the seal may be subject to. • silicone: max. 180°C

• polyurethane: max. 120°C

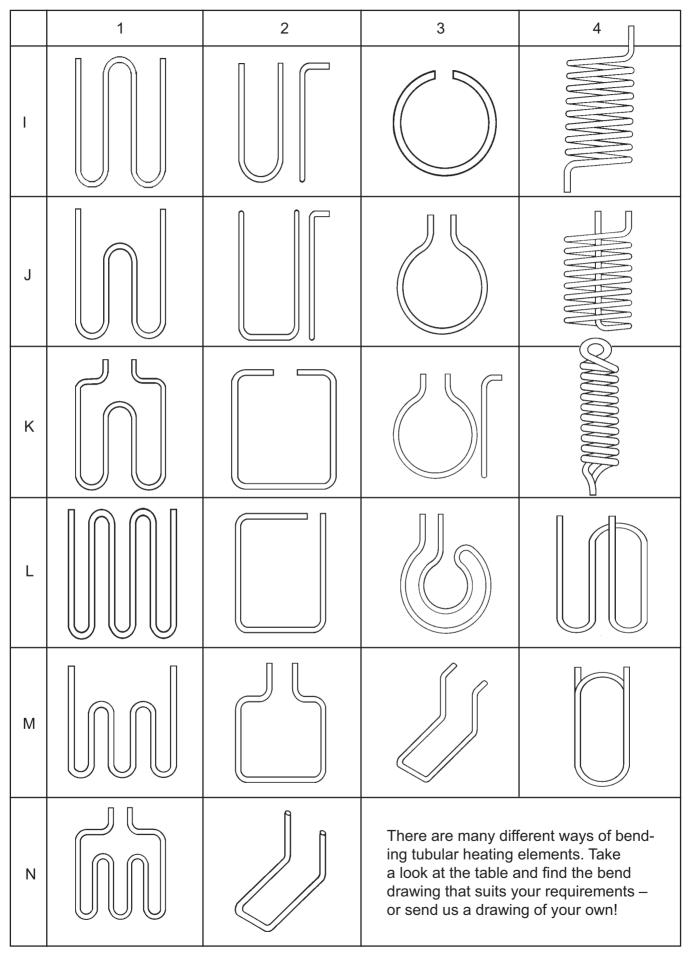
Silicone can only be used in continuous operation in which the heating element is not exposed to moisture, as silicone is not diffusion-proof so moisture transfer is possible. Polyurethane is diffusion-proof and bonds well to metal.

Μ4 M6 Μ4 Max. surface Max. tube Material Dimension Ø2.5 pin stainless stainless Ø3.5 pin temperature length steel steel steel Ø6.25 mm 150°C 3860 mm Х Copper Copper Ø8.50 mm 150°C 7080 mm Х Х Х Х 150°C Copper Ø10.2 mm 7860 mm Х Х Х Х AISI 304 Ø6.25 mm 750°C 3700 mm Х AISI 304 750°C Х Х Ø8.50 mm 6810 mm Х Х AISI 321 Ø6.25 mm 750°C 3700 mm Х AISI 321 Ø8.50 mm 750°C 6810 mm Х Х Х Х Х Х AISI 321 Ø10.2 mm 750°C 7650 mm Х Х Ø8.50 mm 900°C AISI 309 6400 mm Х Х Х Х 3700 mm AISI 316L Ø6.25 mm 750°C Х 750°C AISI 316L Ø8.50 mm 6810 mm Х Х Х Х AISI 316L Х Ø10.2 mm 750°C 7650 mm Х Х Х AISI 316L 750°C Ø12.7 mm 7020 mm Х Inconell 600 Ø8.50 mm 980°C 6810 mm Х Х Х Х Incoloy 800 Ø6.25 mm 800°C 3700 mm Х Incoloy 800 Ø8.50 mm 800°C 6810 mm Х Х Х Х Incoloy 800 Ø10.2 mm 800°C 7650 mm Х Х Х Х Incoloy 800 Ø12.7 mm 800°C 7020 mm Х Incoloy 825 Ø6.25 mm 750°C 3700 mm Х Incoloy 825 Ø8.50 mm 750°C 6810 mm Х Х Х Х Incoloy 825 Ø12.7 mm 750°C 7020 mm Х SMO 254 Ø8.50 mm 400°C 6810 mm Х Х Х Х Titanium Ø8.50 mm 650°C 6900 mm Х Х Х Х Ø12.7 mm 650°C 6960 mm Titanium Х

TUBE TYPES

SINUS JEViΩ

APPLICATIONS


Of course, when choosing a tube cap material, the medium to be heated has a significant part to play. The surface load, W/cm², is another factor. If the surface load is too high, the heating element will overheat and burn. In the case of certain medium where the heat transmission is particularly high, a significantly higher surface load than in air can be accepted, just as the media may make specific demands of the tube cap material on account of corrosion problems. Likewise the media may demand a particularly low surface temperature due to -for example- a risk of fire or coating problems. The issue of corrosion can often be resolved by contacting a supplier of chemicals.

This guideline table specifies the recommended maximum surface load in W/cm² for various heating purposes in connection with the most suitable tube cap materials.

Heating materials

	Max. W/cm²	CU	AISI 304	AISI 309	AISI 316	AISI 321	INC 600	INC 800	INC 825	SMO 254	Titanium
Liquid media											
Water, stagnant	6 - 10	X							X	Х	Х
Water, moving	10 - 15	Х							X	Х	Х
Alkaline bath	4 - 6								X	Х	Х
Water-dissolved acids and salts	1 - 2								x	Х	х
Phosphating bath	2 - 4										
Ammonia and am- monium chloride bath	2 - 3								x	х	х
Oil, thin	1 - 3		Х		X				X	Х	Х
Oil, thick	1 - 1½		Х		X						
Wax and lacquers	0.5		Х		X						
Gaseous media											
Air, stationary	1 - 3		Х	Х	X	X	X	Х			
Air, moving	5		Х	Х	X	Х	Х	Х			
Steam 100°C	2 - 4	X				Х		Х	X	Х	
Steam 250°C	1 - 3					X		Х	X	Х	
Steam 500°C	1 - 3							Х	X		
Flue gas 300°C	1 - 3				X	X	X	Х	X	Х	
Solid media (e.g. steel plate)											
Without regulation	1-1/2		Х	Х	Х	Х	Х	Х	X		
Embedded in metal	4 - 6		х	Х	х	x	x	x	x		
With regulation	8 - 10		Х	Х	Х	Х	Х	Х	X		
Laid in track	3 - 6		Х	Х	Х	Х	Х	Х	X		

BENDING SKETCHES

FINISHES

The illustrations show typical end pieces used for heating elements and electric heater cartridges. There are lots of other options available too, so please contact our sales team for more information.

M4 threaded bolt on Ø8.5 and Ø10.2 tubes. M6 threaded bolt on Ø12.7 tube only.

Double spade, 90° angle.

Single spade 6.3 mm.

Fitted with an insulated flex or stranded wire. High-temperature flex for up to 400°C is stocked.

Single spade with 45° or 90° angle bend.

Double spade, straight.

End piece with welded cable and shrink flex

Fully cast end piece with polyurethane for outstanding seal.

FLANGES AND NIPPLES

Tubular heating elements soldered or welded with brass or stainless steel nipples. The following are stocked: Brass nipples: $\frac{1}{2}$, $\frac{3}{4}$, 1", 1 $\frac{1}{4}$ ", 1 $\frac{1}{2}$ ", 2", 2 $\frac{1}{2}$ " and 3". Stainless steel nipples: $\frac{1}{2}$ ", $\frac{3}{4}$ ", 1", 1 $\frac{1}{2}$ " and 2 $\frac{1}{2}$ ".

Electric heater cartridge with oval galvanised or stainless steel box end piece IP55 with PG 13.5. $1^{\prime}\!2''$ and 2''.

Electric heater cartridge with quadrilateral box end piece. Thermostat and thermal fuse fitting optional depending on task and temperature.

Heating elements terminated with nipples for fitting in tanks or reservoirs. Nipples are stocked in: M10, M12, M14 and M16 sizes, made of brass and stainless steel. M14 made of galvanized steel is also stocked.

UF40 flange for household appliances. Can be used for one tubular heating element only.

UF70 flange for household appliances. Can be used for one or two tubular heating elements.

Connecting boxes for electric heater cartridges and tubular heating elements. These can be fitted with thermostats and thermal fuses depending on type.

Special flanges for electric heater cartridges and tubular heating elements. The various flanges can be soldered, welded or clamped onto the heating elements.

SINUS JEViΩ

STAINLESS STEEL TUBING, AISI 304

All standard tubes of Ø8.5mm and Ø10.2mm come with M4 threaded bolt. Standard tubes of Ø6.25mm come with a Ø2.5mm pin (flat). It is possible to weld a spade or wire onto a flat pin.

AISI 304 is used widely for duct heater in ventilation and air conditioning systems, for ovens, cookers and griddles, warming up tools and machinery, fan heaters and oil heater cartridges.

AISI 304 is not suitable for water, and can be used only to a very limited extent for chemicals. The surface load must be very low for use in air and oil. The surface load may be increased in the case of contact heating.

Type Ø6.25mm, AISI 304, cold zone 55 mm						
ltem no.	Length	Voltage	Power	Surface load		
22800080	350 mm	230V	225W	4.8 W/cm ²		
22800098	500 mm	230V	350W	4.6 W/cm ²		
22800106	600 mm	230V	500W	5.2 W/cm ²		
22800114	850 mm	230V	750W	5.2 W/cm ²		
22800122	1100 mm	230V	1000W	5.1 W/cm ²		
22800130	1300 mm	230V	1200W	5.1 W/cm ²		
22800148	1600 mm	230V	1500W	5.1 W/cm ²		
22800155	2100 mm	230V	1000W	2.6 W/cm ²		
22800163	2100 mm	230V	1500W	3.8 W/cm ²		
22800171	2100 mm	230V	2000W	5.1 W/cm ²		
22800254	600 mm	400V	500W	5.2 W/cm ²		
22800262	850 mm	400V	750W	5.2 W/cm ²		
22800270	1100 mm	400V	1000W	5.1 W/cm ²		
22800288	1300 mm	400V	1200W	5.1 W/cm ²		
22800296	1600 mm	400V	1500W	5.1 W/cm ²		
22800304	2100 mm	400V	1000W	2.6 W/cm ²		
22800312	2100 mm	400V	2000W	5.1 W/cm ²		
22800320	2500 mm	400V	2500W	5.3 W/cm ²		

Type Ø8.5mm, AISI 304, cold zone 90 mm							
Item no.	Length	Voltage	Power	Surface load			
23801202	700 mm	400V	500W	3.6 W/cm ²			
23801210	1000 mm	400V	750W	3.4 W/cm ²			
23801228	1350 mm	400V	1000W	3.2 W/cm ²			
23801236	1950 mm	400V	1500W	3.2 W/cm ²			
23801244	2600 mm	400V	2000W	3.1 W/cm ²			
23801251	3450 mm	400V	2700W	3.1 W/cm ²			
23801269	700 mm	400V	1000W	7.2 W/cm ²			
23801277	1000 mm	400V	1500W	6.8 W/cm ²			
23801285	1350 mm	400V	2000W	6.4 W/cm ²			

Type Ø8.5mm, AISI 304, cold zone 55 mm						
ltem no.	Length	Voltage	Power	Surface load		
23801293	1950 mm	400V	3000W	6.3 W/cm ²		
23801301	2600 mm	400V	4000W	6.2 W/cm ²		
23801319	3450 mm	400V	5400W	6.2 W/cm ²		
23800964	500 mm	230V	150W	1.8 W/cm ²		
23800972	500 mm	230V	250W	2.9 W/cm ²		
23800980	650 mm	400V	500W	4.0 W/cm ²		
23800998	650 mm	400V	1000W	8.0 W/cm ²		
23801004	900 mm	400V	1500W	7.8 W/cm ²		
23801012	1200 mm	400V	2100W	7.8 W/cm ²		
23801020	1500 mm	400V	2700W	7.7 W/cm ²		
23801038	1800 mm	400V	3300W	7.6 W/cm ²		
23801046	2100 mm	230V	1300W	2.5 W/cm ²		
23801053	2400 mm	230V	1500W	2.5 W/cm ²		
23801061	2700 mm	230V	1700W	2.5 W/cm ²		
23801087	3300 mm	230V	2100W	2.5 W/cm ²		
23801103	3900 mm	230V	2500W	2.5 W/cm ²		
23801525	750 mm	400V	700W	4.6 W/cm ²		
23801541	950 mm	400V	1000W	4.9 W/cm ²		
23801566	1350 mm	400V	1500W	4.8 W/cm ²		
23801582	1750 mm	400V	2000W	4.8 W/cm ²		
23801608	2200 mm	400V	2500W	4.6 W/cm ²		
23801624	2600 mm	400V	3000W	4.6 W/cm ²		
23801657	3450 mm	400V	4000W	4.6 W/cm ²		

Type Ø10.2mm, AISI 304, cold zone 90 mm						
ltem no.	Length	Voltage	Power	Surface load		
24800104	1800 mm	400V	2500W	4.8 W/cm ²		
24800112	2100 mm	400V	3000W	4.8 W/cm ²		
24800120	2500 mm	400V	3500W	4.7 W/cm ²		

STAINLESS STEEL TUBING, AISI 316L

AISI 316L is used primarily for air heating in duct heater, particularly for offshore applications, oil installation and in other damp environments. To a limited extent, AISI 316L is also used with restrictions with some acids/bases and with aggressive gases.

Type Ø8.5mm, AISI 316L, cold zone 90 mm							
Item no.	Length	Voltage	Power	Surface load			
23802101	500 mm	230V	1000W	11.7 W/cm ²			
23802119	700 mm	230V	1500W	10.8 W/cm ²			
23802127	900 mm	230V	2000W	10.4 W/cm ²			
23802135	1300 mm	230V	3000W	10.0 W/cm ²			
23802143	500 mm	400V	1000W	11.7 W/cm ²			
23802150	700 mm	400V	1500W	10.8 W/cm ²			
23802168	900 mm	400V	2000W	10.4 W/cm ²			
23802176	1300 mm	400V	3000W	10.0 W/cm ²			
23802184	1700 mm	400V	4000W	9.8 W/cm ²			
23802192	1000 mm	230V	1000W	4.6 W/cm ²			
23802200	1350 mm	230V	1500W	4.8 W/cm ²			
23802218	1700 mm	230V	2000W	4.9 W/cm ²			
23802226	1000 mm	400V	1000W	4.6 W/cm ²			
23802234	1350 mm	400V	1500W	4.8 W/cm ²			
23802242	1700 mm	400V	2000W	4.9 W/cm ²			
23802259	3000 mm	400V	3500W	4.6 W/cm ²			

CORROSION AND ACID RESISTANT TUBING, INCOLOY 825

Incoloy 825 is used wherever heating elements are required which are able to withstand aggressive media, but it can also be used for heating water which contains a lot of minerals and lime.

Incoloy 825 is a high alloy steel with a molybdenum content higher than the AISI types, making it suitable for aggressive media.

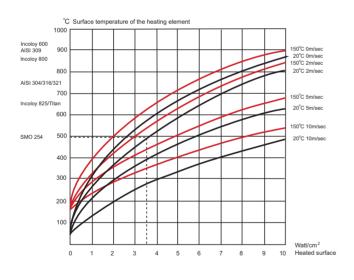
Incoloy 825 is replacing the AISI steels to an increasing extent in many areas.

Type Ø8.5mm, Incoloy 825, cold zone 90 mm						
Item no. Length		Voltage	Power	Surface load		
23804008	600 mm	230V	1000W	8.9 W/cm ²		
23804016	850 mm	400V	1500W	8.4 W/cm ²		
23804024	1100 mm	400V	2000W	8.1 W/cm ²		
23804040	1550 mm	400V	3000W	8.2 W/cm ²		
23804032	2000 mm	400V	4000W	8.2 W/cm ²		
23804057	3000 mm	230V	2000W	2.7 W/cm ²		

DIMENSIONING

Diagrams/curves are used to indicate the maximum permitted surface load (W/cm²) as a function of the operating/ ambient temperature. These curves act merely as a guideline as the heat passing between the elements will have a part to play. If the heating elements are used in a duct heater, the length of this will also have an influence.

Example 1 (see the diagram below)

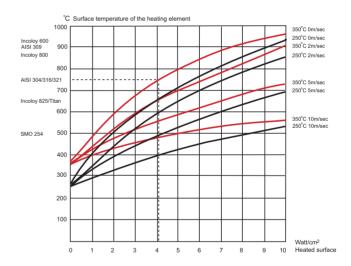

We wish to find out what maximum permitted surface load is applicable to the heating element, working on the basis of the following information:

- the duct heater as an input temperature of 20°C
- the air speed is 2 m/sec.
- AISI 304 is used (indicated to be able to withstand 700 800°C)
- a maximum permitted surface temperature of 500°C is selected for safety reasons.

What surface load will this give for the element?

We select the curve 20°C 2 m/sec and follow it down to 500°C.

A maximum permitted surface load of 3.5 W/cm^2 can be seen. If this is too low, it is possible to select a faster airflow of 5 m/sec, for example, which would give a value of 5.8 W/cm², or else less stringent requirements for a safety temperature of 500°C could be selected.


Example 2 (see the diagram below)

What would the maximum permitted surface load be if we have an AISI 316 heating element and the following operating conditions are prevalent?

- operating temperature of 350°C
- the heating element is located in stationary air, 0 m/sec.

We find the curve 350°C 0 m/sec and follow it until we see AISI 316. We can see a maximum permitted surface load of 4 W/cm².

If a different type of steel is selected, such as Incoloy 800, the surface load increases to 6.4 $W/cm^2.$

SINUS JEViΩ

Sinus is one of the pioneers in the field of explosion proof heating equipment, today we are still operating at the forefront. We manufacture according to ATEX as well as IECEx and EAC directives.

For the production of Ex-proof equipment a PQAN (Product Quality Assurance Notification) is issued by TUV-Nord. Our ISO-9001 and ISO-14001 systems are also monitored by this organisation.

